Package: skedastic 2.0.2

skedastic: Handling Heteroskedasticity in the Linear Regression Model

Implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) <doi:10.1007/978-0-387-21606-5>. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) <doi:10.1080/00031305.2015.1089789>. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022) <https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm>. A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3). There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) <https://projecteuclid.org/euclid.bsmsp/1200512155>, Ramsey's (1969) BAMSET Test <doi:10.1111/j.2517-6161.1969.tb00796.x>, the tests of Bickel (1978) <doi:10.1214/aos/1176344124>, Breusch and Pagan (1979) <doi:10.2307/1911963> with and without the modification proposed by Koenker (1981) <doi:10.1016/0304-4076(81)90062-2>, Carapeto and Holt (2003) <doi:10.1080/0266476022000018475>, Cook and Weisberg (1983) <doi:10.1093/biomet/70.1.1> (including their graphical methods), Diblasi and Bowman (1997) <doi:10.1016/S0167-7152(96)00115-0>, Dufour, Khalaf, Bernard, and Genest (2004) <doi:10.1016/j.jeconom.2003.10.024>, Evans and King (1985) <doi:10.1016/0304-4076(85)90085-5> and Evans and King (1988) <doi:10.1016/0304-4076(88)90006-1>, Glejser (1969) <doi:10.1080/01621459.1969.10500976> as formulated by Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) <doi:10.1080/07474939908800438>, Goldfeld and Quandt (1965) <doi:10.1080/01621459.1965.10480811>, Harrison and McCabe (1979) <doi:10.1080/01621459.1979.10482544>, Harvey (1976) <doi:10.2307/1913974>, Honda (1989) <doi:10.1111/j.2517-6161.1989.tb01749.x>, Horn (1981) <doi:10.1080/03610928108828074>, Li and Yao (2019) <doi:10.1016/j.ecosta.2018.01.001> with and without the modification of Bai, Pan, and Yin (2016) <doi:10.1007/s11749-017-0575-x>, Rackauskas and Zuokas (2007) <doi:10.1007/s10986-007-0018-6>, Simonoff and Tsai (1994) <doi:10.2307/2986026> with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) <doi:10.1016/S0378-3758(03)00210-6>, Szroeter (1978) <doi:10.2307/1913831>, Verbyla (1993) <doi:10.1111/j.2517-6161.1993.tb01918.x>, White (1980) <doi:10.2307/1912934>, Wilcox and Keselman (2006) <doi:10.1080/10629360500107923>, Yuce (2008) <https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070>, and Zhou, Song, and Thompson (2015) <doi:10.1002/cjs.11252>. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the conditional two-sided p-values of Kulinskaya (2008) <arxiv:0810.2124v1>, and probabilities for the nonparametric trend statistic of Lehmann (1975, ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) <doi:10.2307/1912934>, MacKinnon and White (1985) <doi:10.1016/0304-4076(85)90158-7>, Cribari-Neto (2004) <doi:10.1016/S0167-9473(02)00366-3>, Cribari-Neto et al. (2007) <doi:10.1080/03610920601126589>, Cribari-Neto and da Silva (2011) <doi:10.1007/s10182-010-0141-2>, Aftab and Chang (2016) <doi:10.18187/pjsor.v12i2.983>, and Li et al. (2017) <doi:10.1080/00949655.2016.1198906>.

Authors:Thomas Farrar [aut, cre], University of the Western Cape [cph]

skedastic_2.0.2.tar.gz
skedastic_2.0.2.zip(r-4.5)skedastic_2.0.2.zip(r-4.4)skedastic_2.0.2.zip(r-4.3)
skedastic_2.0.2.tgz(r-4.4-any)skedastic_2.0.2.tgz(r-4.3-any)
skedastic_2.0.2.tar.gz(r-4.5-noble)skedastic_2.0.2.tar.gz(r-4.4-noble)
skedastic_2.0.2.tgz(r-4.4-emscripten)skedastic_2.0.2.tgz(r-4.3-emscripten)
skedastic.pdf |skedastic.html
skedastic/json (API)
NEWS

# Install 'skedastic' in R:
install.packages('skedastic', repos = c('https://tjfarrar.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tjfarrar/skedastic/issues

Datasets:
  • T_alpha - Pseudorandom numbers from Asymptotic Null Distribution of Test Statistic for Method of Rackauskas and Zuokas
  • dpeakdat - Probability distribution for number of peaks in a continuous, uncorrelated stochastic series

On CRAN:

4.82 score 7 stars 69 scripts 1.4k downloads 1 mentions 42 exports 104 dependencies

Last updated 11 months agofrom:7ef4e6f66f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winOKNov 03 2024
R-4.5-linuxOKNov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:alvm.fitanlvm.fitanscombeavm.ciavm.fwlsavm.vcovbamsetbickelblusbootlmbreusch_pagancarapeto_holtcook_weisbergcountpeaksdDtrenddiblasi_bowmandpeakdufour_etalevans_kingglejsergodfrey_ormegoldfeld_quandtGSSharrison_mccabeharveyhccmehetplothondahornli_yaopDtrendppeakpRQFrackauskas_zuokassimonoff_tsaiszroetertwosidedpvalverbylawhitewilcox_keselmanyucezhou_etal

Dependencies:backportsbazarbroomcachemcaretcheckmateclasscliclockcodetoolscolorspaceCompQuadFormcpp11crayondata.tablediagramdigestdplyre1071fansifarverfastmapforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatinflectionipredisobanditeratorsKernSmoothkimisclabelinglatticelavalifecyclelistenvlobstrlubridatemagrittrMASSMatrixmemoisemgcvModelMetricsmunsellnlmennetnumDerivosqpparallellypillarpkgconfigplyrpracmaprettyunitspROCprodlimprogressrproxypryrpurrrquadprogquadprogXTR6rbibutilsRColorBrewerRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRdpackrecipesregistryreshape2RfastrlangROIROI.plugin.qpoasesrpartscalesshapeslamSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Auxiliary Linear Variance Modelalvm.fit
Auxiliary Nonlinear Variance Modelanlvm.fit
Anscombe's Test for Heteroskedasticity in a Linear Regression Modelanscombe
Bootstrap Confidence Intervals for Linear Regression Error Variancesavm.ci
Apply Feasible Weighted Least Squares to a Linear Regression Modelavm.fwls
Estimate Covariance Matrix of Ordinary Least Squares Estimators Using Error Variance Estimates from an Auxiliary Variance Modelavm.vcov
Ramsey's BAMSET Test for Heteroskedasticity in a Linear Regression Modelbamset
Bickel's Test for Heteroskedasticity in a Linear Regression Modelbickel
Compute Best Linear Unbiased Scalar-Covariance (BLUS) residuals from a linear modelblus
Nonparametric Bootstrapping of Heteroskedastic Linear Regression Modelsbootlm
Breusch-Pagan Test for Heteroskedasticity in a Linear Regression Modelbreusch_pagan
Carapeto-Holt Test for Heteroskedasticity in a Linear Regression Modelcarapeto_holt
Cook-Weisberg Score Test for Heteroskedasticity in a Linear Regression Modelcook_weisberg
Count peaks in a data sequencecountpeaks
Probability mass function of nonparametric trend statistic DdDtrend
Diblasi and Bowman's Test for Heteroskedasticity in a Linear Regression Modeldiblasi_bowman
Probability mass function of number of peaks in an i.i.d. random sequencedpeak
Probability distribution for number of peaks in a continuous, uncorrelated stochastic seriesdpeakdat
Dufour et al.'s Monte Carlo Test for Heteroskedasticity in a Linear Regression Modeldufour_etal
Evans-King Tests for Heteroskedasticity in a Linear Regression Modelevans_king
Glejser Test for Heteroskedasticity in a Linear Regression Modelglejser
Godfrey and Orme's Nonparametric Bootstrap Test for Heteroskedasticity in a Linear Regression Modelgodfrey_orme
Goldfeld-Quandt Tests for Heteroskedasticity in a Linear Regression Modelgoldfeld_quandt
Golden Section Search for Minimising Univariate Function over a Closed IntervalGSS
Harrison and McCabe's Test for Heteroskedasticity in a Linear Regression Modelharrison_mccabe
Harvey Test for Heteroskedasticity in a Linear Regression Modelharvey
Heteroskedasticity-Consistent Covariance Matrix Estimators for Linear Regression Modelshccme
Graphical Methods for Detecting Heteroskedasticity in a Linear Regression Modelhetplot
Honda's Test for Heteroskedasticity in a Linear Regression Modelhonda
Horn's Test for Heteroskedasticity in a Linear Regression Modelhorn
Li-Yao ALRT and CVT Tests for Heteroskedasticity in a Linear Regression Modelli_yao
Cumulative distribution function of nonparametric trend statistic DpDtrend
Cumulative distribution function of number of peaks in an i.i.d. random sequenceppeak
Probabilities for a Ratio of Quadratic Forms in a Normal Random VectorpRQF
Rackauskas-Zuokas Test for Heteroskedasticity in a Linear Regression Modelrackauskas_zuokas
Simonoff-Tsai Tests for Heteroskedasticity in a Linear Regression Modelsimonoff_tsai
Szroeter's Test for Heteroskedasticity in a Linear Regression Modelszroeter
Pseudorandom numbers from Asymptotic Null Distribution of Test Statistic for Method of Rackauskas and Zuokas (2007)T_alpha
Computation of Conditional Two-Sided p-Valuestwosidedpval
Verbyla's Test for Heteroskedasticity in a Linear Regression Modelverbyla
White's Test for Heteroskedasticity in a Linear Regression Modelwhite
Wilcox and Keselman's Test for Heteroskedasticity in a Linear Regression Modelwilcox_keselman
Yüce's Test for Heteroskedasticity in a Linear Regression Modelyuce
Zhou, Song, and Thompson's Test for Heteroskedasticity in a Linear Regression Modelzhou_etal